Archivo de 25 agosto 2009

La conjetura de Poincaré, la forma del universo, y Grigori Perelman

 

perelman

 

El que fue mejor matemático de principios del siglo XX, según el criterio de muchos profesionales acreditados en este campo, el francés Henri Poincaré, tuvo una intuición con grandes implicaciones para el estudio de la forma del universo. Cuando se descubre algo en matemáticas, suele haber consecuencias a medio y largo plazo, y ésta no fue una excepción. Una conjetura es una intuición que se cree cierta, aunque en el momento de ser establecida no se de una demostración de la misma, y que se postula como supuestamente verídica en base a los resultados propios del grado de avance de la disciplina matemática involucrada en el instante de ser enunciada. La conjetura de Poincaré establece, hablando de un modo técnico, que toda variedad tridimensional simplemente conexa es homeomórfica a una esfera tridimensional.

Una variedad tridimensional es un conjunto de puntos descritos mediante ternas de números. Un ejemplo de variedad tridimensional es un espacio vectorial, que en realidad es la variedad de tres dimensiones tangente a una variedad tridimensional genérica. Otro ejemplo de variedad, en este caso bidimensional es el de una esfera (la corteza de una bola maciza). Como dado un punto de la superficie esférica cualquier punto de su vecindad puede considerarse como incluido en un plano y éste es engendrado mediante combinaciones lineales de dos vectores independientes se dice que es una variedad de dos dimensiones.

Por otro lado un homeomorfismo es una aplicación o función continua entre dos conjuntos tal que es uno a uno (biyectiva) y la inversa es además continua. En otras palabras, un homeomorfismo es una deformación continua entre puntos vecinos que le podemos aplicar a un objeto para conseguir otro diferente geométricamente, pero topológicamente equivalente.

Además, para ya concluir con los conceptos previos, una variedad simplemente conexa es una variedad conectada y sin agujeros, en otras palabras, una variedad o conjunto de puntos de una única pieza y sin huecos internos. Equivalentemente, una variedad es simplemente conexa cuando podemos deformar un lazo cerrado que pase por puntos de la variedad de forma continua pasando en los estados intermedios por puntos de la variedad hasta reducirlo a un punto. Un ejemplo de variedad que no es simplemente conexa es un toro (donuts), pues existen lazos cerrados en la superficie tórica que no se pueden reducir a un punto.

Pues bien, ya están explicados los conceptos básicos. ¿Qué tiene que ver todo esto con el universo?. Pues tiene que ver con el hecho de que el universo es una variedad tridimensional, no sabemos si compacta (finita), si simplemente conexa, o si plana e infinita. ¿Por qué es una variedad tridimensional y no simplemente un espacio vectorial sin curvaturas?. Pues ésto es así porque el espacio es curvo, como se desprende de la teoría general de la relatividad, se curva más localmente en torno a un punto cuanta más masa hay acumuluda en ese punto. Ésta es precisamente la causa de la gravedad, que Newton no supo explicar con su teoría de la gravitación. La gravedad es consecuencia de la curvatura del espacio-tiempo. El hecho de la curvatura del universo es un hecho contrastado experimentalmente. La primera prueba científica de tal cosa la obtuvo el especialista en relatividad Sir Arthur Edington, que además era físico experimental, y que en un eclipse total de sol en Australia tomó imágenes telescópicas del evento usando placas fotográficas, con lo que pudo comprobar que cuando la luna se intercalaba de manera perfecta entre el sol y la Tierra, la luz procedente de las estrellas que bordeaban el sol se curvaba y aparecían desplazadas en relación a su verdadera posición, concordando el desplazamiento con lo previsto por la teoría general de la relatividad. Ésta fue en realidad la primera prueba experimental que confirmaba la teoría de Einstein, si bien de manera posterior se han realizado muchos otros experimentos que no han hecho sino corroborar lo predicho teóricamente por el físico germano-suizo. Ni siquiera la luz pasa sin modificación en la cercanía de los astros masivos (de los cuales el paradigma podría ser un agujero negro, que no la deja escapar de su atracción, de ahí el calificativo de «negro»). Y la luz alcanza la máxima velocidad posible en el universo. Ésto es así porque si un objeto fuese capaz de escapar a la propia luz que o bien genera o que refleja, entonces se violaría el principio de causalidad, que establece que las causas preceden a los efectos, pues veríamos antes el futuro del objeto que su pasado, suponiendo un sistema de referencia inercial durante todas las medidas, en el que no existiesen variaciones parejas al principio de relatividad de la simultaneidad. Equivalentemente, obtendríamos antes información de su futuro que de su pasado si éste radiase o reflejase ondas electromagnéticas, que viajan también a la velocidad de la luz en el vacío. (La luz es un caso particular de ondas electromagnéticas de altísima frecuencia). La violación del principio de causalidad contradeciría por lo tanto la experiencia. Se concluye entonces que es la velocidad de la luz la que fija las geodésicas o líneas de mínima longitud entre dos puntos del espacio en la variedad tridimensional que lo define.

De todo lo anterior se deduce que si fuésemos capaces de cartografiar el universo según un conjunto de paralelepípedos (que se curvan en una cuarta dimensión que no percibimos) y si verificamos que cualquier lazo cerrado es compresible hasta un punto según una transformación continua, estaríamos en realidad probando que el universo será equivalente topológicamente a una tri-esfera, por ser ésta la única variedad tridimensional simplemente conexa y compacta, cosa que se ha demostrado con el trabajo de Grigori Perelman, si bien su demostración matemática se ha centrado en algo más general que la conjetura de Poincaré, como es la conjetura de geometrización de Thurston. Cuando se cartografía una superficie, por ejemplo, se tiene una región del plano, al igual que sucede cuando cartografiamos la superficie terrestre en los planisferios. Cuando se cartografía una variedad tridimensional se tiene una región de tres dimensiones que se corresponde uno a uno con la variedad mediante una aplicación biyectiva llamada inmersión.

Por desgracia, no tenemos el poder actualmente para cartografiar según paralelepípedos el universo, pero sí sabemos que probablemente la forma de nuestro universo no sea la de una tri-esfera, pues el grado de curvatura en el espacio-tiempo, que viene dado por el tensor de Ricci, es ínfimo. Esto es, el espacio-tiempo es prácticamente plano.

La demostración de la conjetura de Poincaré ha sido, por su trascendencia, todo un reto para los matemáticos del siglo XX, y una continua fuente de frustraciones. Pero en el mundo existen personas de talento casi sobrenatural, los que comúnmente se denominan genios, en realidad tan pocos que se cuentan con los dedos de las manos. Uno de los genios actuales de las matemáticas es sin duda Grigori Perelman, que con una sorprendente e innovadora argumentación, ha vencido el problema propuesto hace cien años por Poincaré y que se había resistido a generaciones de matemáticos. Desde la intervención de Perelman, la conjetura ha pasado a ser un teorema, al haber demostrado un caso incluso más genérico que el que aquél intuyó.

Por esta demostración, Grigori Perelman fue premiado con la medalla Fields (que junto con la medalla Abel y la medalla Copley son los máximos honores en forma de galardón a los que puede aspirar un matemático) en la convocatoria organizada en el ICM (Congreso Internacional de Matemáticas celebrado en Madrid en el año 2006). Sorprendiendo a propios y extraños, Perelman no acudió a recoger el galardón, aunque el reconocimiento a escala planetaria ya no hay ser viviente que se lo quite. Además se desconoce, en el momento actual, si Perelman aceptará el premio monetario propuesto por el Instituto Clays para quien demostrase la conjetura de Poincaré, entidad que otorga un millón de dólares a las personas que resuelvan los denominados «problemas del milenio», entre los que aquélla se encontraba. Ni que decir tiene que no son problemas precisamente sencillos. Probablemente lo que le sucede a Grigori Perelman, que vive una vida casi de ermitaño desde las conferencias que pronunció sobre su trabajo, es que le molesta estar en el punto de mira de la prensa y los medios de comunicación, aunque la verdadera respuesta sobre la causa de este comportamiento paradójico sólo la conoce él.

 

Infinitas soluciones de una sucesión numérica (1)

 

Dada la sucesión numérica,

1,  2,  6,  42,  1806, …

¿qué número sigue la serie?. La respuesta a esta pregunta es ambigüa, puesto que cualquier sucesión puede ser continuada de cualquier manera, si bien la solución que se nos suele pedir es aquélla en la que no nos salimos de los números naturales. Pero veremos ahora que si los números pueden ser reales existen infinitas soluciones.

Lógicamente la solución “incremental” es muy sencilla. Basta con elevar al cuadrado el anterior y sumarle ese mismo número, partiendo de 1 para el primer término.

Si queremos expresar esto en forma de polinomio, tenemos para n empezando en 1 ( n = 1, 2, 3, 4, 5, 6, …), el siguiente polinomio, que se verifica para todos los términos menos para el primero, el cuarto y el quinto :

 An = (n – 1) ^ 2  +  (n –  1)

Si ahora queremos que además esta ley se adapte al primer término ( A1 =  1), nos basta con hacer :

 An =  (n – 1) ^ 2  +  (n – 1)  +  (1 / 24) ( n – 2)(n – 3)(n – 4)(n – 5)

pues es un polinomio cuyo tercer sumando se anula para los 4 valores de n siguientes a 1, no así para n=1, para el cual da el 1 necesario para sumarle al 0 que dan para ese término los dos primeros sumandos.

Si queremos que además se adapte el término cuarto tendremos en cuenta que para n = 4 el valor de An según la anterior expresión sería de 12, por lo tanto debemos sumar una cantidad de 30, lo cual conseguimos con el término:  (n-1)(n-2)(n-3) 5. De este modo nos queda el siguiente polinomio, que pasa por los primeros 4 valores :

An =  (n – 1) ^ 2  +  (n – 1)  +  (1 / 24) ( n – 2)(n – 3)(n – 4)(n – 5) +  5 (n – 1)(n – 2)(n – 3) .

Finalmente, para conseguir que el polinomio de An pase además por el quinto término de la sucesión tendremos en cuenta que para ese valor de n = 5 el anterior polinomio toma una ordenada igual a 140, por lo que nos bastará con sumar un término adicional de  (1666/24)(n-1)(n-2)(n-3)(n-4). Nos queda entonces el polinomio siguiente, que pasa por los 5 primeros valores de n :

An =  (n – 1) ^ 2  +  (n – 1)  +  (1 / 24) ( n – 2)(n – 3)(n – 4)(n – 5) +  5 (n – 1)(n – 2)(n – 3) + (1666/24)(n – 1)(n – 2)(n – 3)(n – 4).

Para demostrar de modo fehaciente y sencillísimo que existen infinitas soluciones al problema (siempre y cuando se nos permita salirnos de los números naturales), basta con que consideremos el siguiente polinomio :

An =  (n – 1) ^ 2  +  (n – 1)  +  (1 / 24) ( n – 2)(n – 3)(n – 4)(n – 5) +  5 (n – 1)(n – 2)(n – 3) + (1666/24)(n – 1)(n – 2)(n – 3)(n – 4) +  a ( n – 1)( n – 2)(n – 3)(n – 4)(n – 5)

Para cualquier valor “a” que elijamos, el polinomio aquí representado pasa por los 5 primeros términos dados como dato, y además dependiendo del valor “a” escogido tendremos un valor diferente para el término 6 de la serie.

Y estas soluciones son buenas, porque están resumidas en una ley lógica, que por supuesto también se podría poner en forma “incremental”, que tomaría la forma de una ecuación en diferencias.

En otras palabras, existen infinitos polinomios que pasan por un conjunto dado finito de puntos, y como en los problemas de sucesiones numéricas se nos pide el número / números que continúan la serie, habría en principio infinitas soluciones (si los números pueden ser reales o complejos). La razón de esto será explicada en entradas siguientes de este mismo hilo.

(4) – Las lágrimas negras de Enola Gay

  

El 6 de agosto de 1945 es una fecha triste para la humanidad. Desde el avión Enola Gay se lanzó sobre Hiroshima la bomba atómica Little Boy.  (El nombre del avión está tomado de una de las madres de los militares que iban a bordo). Al cabo de unos minutos después de la deflagración, y debido a la rápida evaporación de la humedad y agua de la zona, empezó a caer una lluvia de grandes goterones negros, que duró algún tiempo. Como los quemados supervivientes a la explosión tenían mucha sed, bebieron de aquella agua fuertemente contaminada, lo que supuso su fin inminente. De esta forma, no sólo fallecieron las víctimas directas de la explosión, sino también los que tomaron aquella agua envenenada más los que quedaron y desarrollaron cánceres y sus sucesivas generaciones, que heredaron de tal suceso malformaciones congénitas y enfermedades incurables. Como triste recuerdo -y en el honor- de todos los fallecidos a causa de Little Boy he escrito este poema.

 

«Las lágrimas negras de Enola Gay»

 

 

Si las tristes lágrimas negras de Enola Gay, lloviendo,

derritiesen radiactivamente corazones,

derritiesen tu corazón

dejándolo en carne viva.

Si lubricasen los candados perennemente oxidados

y convirtiesen campos yermos en vergeles,

si regasen los rosales en los hombres

y traspasasen cráneos,

traspasasen tu cráneo

trasustanciándose en una borrachera

de dopamina fresca en tu sistema límbico…

Si las tristes lágrimas negras de Enola Gay, lloviendo,

asesinasen la sed y el hambre,

necrosizasen los recios tejidos

del odio, la envidia y la venganza,

y diluviando inundasen todo de amor,

te inundasen de amor verdadero,

¡oh, mujer re-querida!,

entonces se cumpliría el imposible

epitafio de la inocente difunta:

Enola Gay requiescat in pace.

 

© El rostro sagrado, Sergeantalaric, 2012.