Archive for the ‘ Consol ’ Category

Los radiofaros Consol (Elektra-Sonne) – (10) Datos técnicos de las estaciones europeas

 

En esta entrada presentaré los datos técnicos concretos relativos a la transmisión que se efectuaba desde la estaciones Consol europeas en los años 1957 y 1966, a excepción de los de la estación de Arneiro que ya he publicado. Estos datos han sido extraidos de la publicación del Instituto Hidrográfico de la Marina “Radiofaros Consol –publicación especial número 2-“, en sus ediciones respectivas de 1957 y de 1966.

   

ESTACION CONSOL DE GUILLENA (SEVILLA) – (Datos técnicos de 1957)

 

Situación : Latitud 37º 31’ 17’’,44 N.   Longitud 6º 01’ 48’’,06 W.

Frecuencia :  315 KHz. (952,4 metros).

Tipo de onda : A 1.

Potencia : 1,5 Kwatt.

Características de emisión :

a) Emisión omnidireccional = Indicativo SL y raya larga durante 60 segs.

b) Emisión de orientación = Puntos de 1/6 de seg. y rayas de 5/6 de seg. durante 60 segs.

Período total : 120 segundos.

Horario de emisiones : Continuo.

Sectores utilizables : Del 014º al 152º y del 194º al 332º.

 

 

ESTACION CONSOL DE STAVANGER (NORUEGA) – (Datos técnicos de 1957)

  

Situación : Latitud 58º 37’ 30’’  N.   Longitud 5º 37’ 45’’  W.

Frecuencia :  319 KHz. (940,4 metros).

Tipo de onda : A 1.

Potencia : 1,5 Kwatt.

Características de emisión :

a) Emisión omnidireccional = Señal continua e indicativo LEC durante 30 segs.

b) Emisión de orientación = Puntos de 1/6 de seg. y rayas de 5/6 de seg. durante 60 segs.

Período total : 60 segundos.

Horario de emisiones : Servicio permanente.

Sectores utilizables : Del 350º al 140º y del 170º al 320º.

 

 

ESTACION CONSOL DE BUSH MILLS (IRLANDA DEL NORTE) – (Datos técnicos de 1957)

  

Situación : Latitud 55º 12’ 20’’  N.   Longitud 6º 28’ 02’’  W.

Frecuencia :  266 KHz. (1127,8 metros).

Tipo de onda : A 1.

Potencia :  2 Kwatt.

Características de emisión :

a) Emisión omnidireccional = Indicativo MWN y raya larga durante 10 ó 30 segs.

b) Emisión de orientación = Puntos de 1/8 de seg. y rayas de 3/8 de seg. durante 30 segs.

Período total : 40 ó 60 segundos.

Horario de emisiones : Servicio permanente.

Sectores utilizables : Del 065º al 195º y del 245º al 015º.

 

 

ESTACION CONSOL DE PLONEIS (FRANCIA) – (Datos técnicos de 1957)

  

Situación : Latitud 48º 01’ 06’’  N.   Longitud 4º 12’ 55’’  W.

Frecuencia :  257 KHz. (1167,3 metros).

Tipo de onda : A 1.

Características de emisión :

a) Emisión omnidireccional = Indicativo FRQ durante 20 segs.

b) Emisión de orientación = Puntos de 1/12 de seg. y rayas de 5/12 de seg. durante 30 segs.

Silencio = 10 segs.

Período total : 60 segundos.

Horario de emisiones : Continuo, excepto de 7:30 a.m. a 7:45 a.m., que funciona para su regulación.

Sectores utilizables : Del 033º al 179º y del 213º al 359º.

Nota : Cuando funcionaba en esta fecha en período de prueba emitía la palabra TEST en lugar de su indicativo FRQ y no podían utilizarse sus emisiones en dicho perído.

 

 

ESTACION CONSOL DE GUILLENA (SEVILLA) – (Datos técnicos de 1966)

  

Situación : Latitud 37º 31’ 17’’,44 N.   Longitud 6º 01’ 48’’,06 W.

Frecuencia :  315 KHz. (952,4 metros).

Tipo de onda : A 1.

Potencia : 1,5 Kwatt.

Características de emisión :

a) Emisión omnidireccional = Indicativo SL (… .-..) durante 3,5 segs.; silencio durante 2,5 segs.

b) Emisión de orientación = Puntos y rayas durante 30 segs.

c) Omnidireccional también = Silencio 2,5 segs.; raya larga 19 segs; silencio 2,5 segs.

Período total : 60 segundos.

Horario de emisiones : Continuo.

Sectores utilizables : Del 014º al 152º y del 194º al 332º.

 

 

ESTACION CONSOL DE STAVANGER (NORUEGA) – (Datos técnicos de 1966)

  

Situación : Latitud 58º 37’ 30’’  N.   Longitud 5º 37’ 45’’  W.

Frecuencia :  319 KHz. (940,4 metros).

Tipo de onda : A 1.

Potencia : 1,5 Kwatt.

Características de emisión :

a) Emisión omnidireccional = Indicativo LEC (.-.. . -.-.) durante 5,8 segs; raya larga, 19,2 segs.; silencio, 2,5 segs.

b) Emisión de orientación = Puntos y rayas durante 30 seg.; silencio durante 2,5 segs.

Período total : 60 segundos.

Horario de emisiones : Continuo.

Sectores utilizables : Del 350º al 140º y del 170º al 320º.

 

 

ESTACION CONSOL DE BUSH MILLS (IRLANDA DEL NORTE) – (Datos técnicos de 1966)

  

Situación : Latitud 55º 12’ 20’’  N.   Longitud 6º 28’ 02’’  W.

Frecuencia :  266 KHz. (1127,8 metros).

Tipo de onda : A 1.

Potencia :  2 Kwatt.

Características de emisión :

a) Emisión omnidireccional = Indicativo MWN (– .– .-) y raya larga durante 8 segs.

b) Emisión de orientación = Puntos de 1/8 de seg. y rayas de 3/8 de seg. durante 32 segs.

Período total : 40 segundos.

Horario de emisiones : Continuo, excepto de 16:00 a 16:15 diariamente y de 11:00 a 12:00 los miércoles.

Sectores utilizables : Del 065º al 195º y del 245º al 015º.

 

 

ESTACION CONSOL DE PLONEIS (FRANCIA) – (Datos técnicos de 1966)

  

Situación : Latitud 48º 01’ 06’’  N.   Longitud 4º 12’ 55’’  W.

Frecuencia :  257 KHz. (1167,3 metros).

Tipo de onda : A 1.

Características de emisión :

a) Emisión omnidireccional = Indicativo FRQ (..-. .-. –.-) dos veces.

b) Emisión de orientación = Puntos de 1/12 de seg. y rayas de 5/12 de seg. durante 30 segs.

Período total : 40 segundos.

Horario de emisiones : Continuo, excepto de 7:30 a.m. a 7:45 a.m., que funciona para su regulación.

Sectores utilizables : Del 033º al 179º y del 213º al 359º.

Nota : Cuando funcionaba en esta fecha en período de prueba emitía la palabra TEST en lugar de su indicativo FRQ y no podían utilizarse sus emisiones en dicho perído.

 

Como se puede observar, a tenor de los datos que aquí se hallan, cada una de las estaciones Consol de Europa varió al transcurrir el tiempo sus características intrínsecas de transmisión, lo cual es lógico, ya que este hecho se corresponde con los reajustes que se hacen en cualquier sistema técnico a lo largo de su vida útil, y las estaciones Consol no fueron una excepción a esto.

Para ya culminar con esta entrada, inserto a continuación un mapa extraido de un libro extranjero de mediados de siglo, en el que se recoge una representación de las coberturas de cada una de las estaciones Consol europeas, exceptúando la de la estación de Ploneis (Francia), y por supuesto sin tener en cuenta las estaciones que funcionarían años más tarde con esta misma tecnología. Se puede observar en este mapa que quedaban muy pocas zonas en el Atlántico Norte a las que no llegara la señal de al menos dos estaciones. Era imprescindible el recibir en alta mar la señal de dos estaciones, ya que con la señal de una no bastaba. Así como con los sistemas Decca y Loran, que ya he tratado en su día, era suficiente recibir distintas ondas parejas a distintas antenas dentro de la misma estación, sin embargo el sistema Consol sólo proveía de una línea de demora por medida/estación, y para llevar a cabo el emplazamiento de la ubicación se necesitaban al menos dos líneas de demora, que se intersecaban en el mapa en el lugar de la posición del navío, submarino o avión. Por otra parte, también se puede observar en el dibujo, así como en los datos expuestos, que existían sectores no utilizables para cada estación, a pesar de que su señal sí llegaba físicamente a esas zonas. En estos sectores, que se correspondían con ángulos pequeños en relación a la dirección de alineamiento de las tres antenas de la estación, no se debía usar la información extraida de la recepción de la señal, dado que una diferencia o imprecisión pequeña en la medida de la cantidad de puntos (o rayas) hasta el momento de equiseñal y después del mismo, que no era infrecuente por determinarse ambos números mediante  la audición de la  onda demodulada,  significa un mayor error en relación a la posición real en esta zona si comparamos ese error con el que se produciría con igual audición en las posiciones del receptor no próximas a la dirección de alineamiento de las antenas.

 

 

Los radiofaros Consol (Elektra-Sonne) – (9) El transmisor

   

  

Siguiendo con la serie de artículos dedicados al sistema radioeléctrico Consol, en el presente apartado trataré la filosofía del sistema transmisor, el cual en la estación de Arneiro (Cospeito) se hallaba emplazado en uno de los edificios ubicados a menos de 200 metros de la antigua (ahora ya no existente) antena central.

La misión del transmisor del sistema Consol era la de generar la señal de corriente de alta potencia que debía ser “colocada” en cada uno de los tres mástiles radiantes.

La operación del sistema Consol se basaba en dos partes diferenciadas, en la primera de las cuales –funcionando como baliza omnidireccional- sólo transmitía la antena central, emitiendo el indicador Morse de la estación modulando a la portadora, mientras que en la segunda parte –en la que se generaba la señal de orientación- una señal CW sin modular –que sonaría como un pitido continuo en un receptor- se aplicaba a la antena central, al tiempo que a la misma señal se le sometía a un programa doble de desfasaje, para generar así las dos señales de los mástiles radiantes extremos.

En esa segunda parte de transmisión de señal de orientación, la antena central emitía un tono de portadora, vibrando en la estación de Arneiro dicha portadora a la frecuencia de 285 KiloHerzios. Ahora bien, si empleamos este mismo tono de portadora sin modular en los tres mástiles radiantes, no obtendríamos el diagrama de radiación de rotación lenta de un radiofaro. Para ello, y de acuerdo con el dibujo de más arriba, la antena central emitía la portadora sin ninguna modificación en su fase en dicha fracción de tiempo de orientación (segunda parte) eso sí con una potencia que era doble a la de las antenas laterales (esto es, una amplitud de señal aproximadamente cuádruple). Al mismo tiempo, la portadora era sometida a un régimen de desfasaje compuesto de dos partes, para la cual existían sendos circuitos. Primeramente a la señal sin modular se le practicaba un desfasaje brusco periódico P por saltos de 180º, generando así dos señales retardadas en esa cantidad, y después se les añadía además un desfasaje D continuo que variaba entre 0º y 180º. De este modo se obtenían dos señales diferentes entre las cuales mediaba un retardo (o desfase) de acuerdo con el régimen doble, y que eran aplicadas a las antenas de los extremos. El desfasaje resultante variaba, pues, con una forma parecida a la hoja de una sierra. El régimen de tipo P con saltos bruscos era el responsable de que al sintonizar en alta mar el receptor con los 285 KHz., en este caso, de Consol de Arneiro, se oyesen puntos más fuertes entre los que había rayas más débiles o viceversa, y al considerar dicho régimen combinado con el régimen continuo D lo que se obtenía es que la envolvente de los puntos iba creciendo y la de las rayas decreciendo (o viceversa) hasta hacerse iguales en el instante de equiseñal.

¿Por qué se hacía esto así?. La razón de que se añadiera ese desfasaje variable y periódico (con periodicidad de 1 minuto para las estaciones de Arneiro, Sevilla y Stavanger y tiempo de permanencia de las tres señales con idéntica fase –momento en que el régimen P generaba 180º y el D generaba 180º- de un sexto de segundo), será explicada con una analogía física en el siguiente párrafo.

Supongamos tres personas alineadas, separadas entre sí –cada dos consecutivas- por una cierta distancia igual, que saltan a la misma frecuencia de repetición en un lago grande de suficiente profundidad. Si el salto entre las tres personas es siempre síncrono, esto es, tocan el agua en el mismo instante los tres, cada una de las tres personas generará la misma onda esférica plana, y el resultado total de la triple acción humana en cada punto del lago resultará ser la suma de cada contribución particular. Ahora bien, para cada dirección particular considerada desde el saltador central, los tres frentes de onda llegarán con distintas fases, con lo cual la interferencia que crearán según cada dirección tendrá diferente amplitud, pues el resultado de sumar vectorialmente en el plano complejo los tres fasores puede dar un fasor resultante de mayor módulo que cada uno de los tres por separado, o podría ser también de menor módulo que el máximo módulo de dichos tres fasores, el primer caso sería una interferencia constructiva y el segundo caso sería una interferencia destructiva; y en general dichos tres fasores pueden aparecer según combinaciones de diferentes estados de vibración parejos a distintos ángulos de fase aunque sus amplitudes sean aproximadamente iguales-. De este modo, como en la dirección perpendicular a la de alineamiento entre las tres personas, las tres ondas llegan al frente de onda con la misma fase, esto es, en el mismo estado de vibración, debido a que en esa dirección los retardos de cada una hasta llegar al frente de fase son idénticos en una posición lo suficientemente alejada de los saltadores, se deduce que según esa dirección, y en campo lejano, las tres ondas se suman sin más, dando lugar a la interferencia más constructiva que puede existir, según la cual las tres amplitudes de vibración se suman tal cual para dar la amplitud resultante.

Supongamos ahora que entre los instantes de salto de las dos personas extremas, utilizando la central como referencia, aplicamos los dos regímenes de desfase comentados. Como hablar del desfasaje entre dos señales es equivalente a hablar del retardo que media entre ellas, lo que sucederá es que los tres saltadores sólo saltarán síncronamente en el sexto de segundo en el que el régimen P aporta 180º y el régimen D también 180º, y en el que permanecen las tres ondas transmitidas con la misma fase. Considerando sólo el régimen D, en el intervalo temporal del primer medio minuto el primer saltador será el primero en saltar, seguido del segundo saltador por un tiempo cada vez mayor, y siendo esa diferencia temporal la suplementaria de la que hay entre el segundo y el tercero saltadores. Cuando se llega a la mitad del tiempo de operación, existe igualdad de retardos hasta los dos saltadores. Después de este instante, el desfase con respecto al tercer saltador seguirá disminuyendo y con respecto al primero aumentando. Pero si consideramos aditivamente a esta disposición el régimen brusco P, obtendremos unos desfases que se superponen al lineal, y que se disponen al transcurrir el tiempo de forma casi simétrica antes del punto medio con relación a después del punto medio, por lo que a partir de ese medio minuto se tendrá una onda casi simétrica a la del medio minuto inicial (salvo por que ahora serán los símbolos que tenían mayor amplitud los que tendrán menos y viceversa), todo esto observado desde la recta perpendicular a la alineación de saltadores.¿A qué da lugar esta disposición de retardos temporales?. En cada configuración particular instantánea de retardos, en un momento dado del doble régimen, las tres ondas planas esféricas de los tres saltadores se sumarán tal cual (en fase) en una determinada dirección, en general diferente de la dirección perpendicular. Además, como es lógico, habrá solución de continuidad espacial y temporal en la dirección así establecida, como es de esperar dado que la disposición instantánea de retardos también varía suave y continuamente en el tiempo. Por lo tanto, la dirección de interferencia totalmente constructiva o de máximo valor de la onda total irá girando. En realidad todo lo que aquí he dicho debe ser ampliado, ya que habrá más direcciones de máxima interferencia que una, dado que todas aquellas direcciones en que las tres ondas llegan con desfases de múltiplos de 360º, equivalentemente retardos múltiplos del periodo de repetición de saltos, también darán lugar a interferencias totalmente constructivas en campo lejano (se habla de campo lejano en radiación de ondas refiriéndonos a lugares lo suficientemente alejados de la estación transmisora como para que ahí las ondas esféricas puedan ser consideradas como planas). Por lo tanto, lo que se tiene en realidad es un conjunto de líneas de máxima amplitud que van girando alrededor, con variación continua angularmente entre ellas, dando lugar a algo parecido a un faro.

 

 

Si ahora aplicamos esta analogía al sistema radiante formado por las tres antenas, con su régimen de desfasaje implícito, habremos conseguido en realidad un radiofaro, con un cierto número de lóbulos girando a la misma velocidad en torno a la estación transmisora. En el anterior esquema se representa el régimen de desfasaje brusco y periódico P.

A continuación se detallan los datos técnicos relativos a la transmisión que se efectuaba desde la estación Consol de Arneiro en los años 1957 y 1966, extraidos de la publicación del Instituto Hidrográfico  de la Marina “Radiofaros Consol –publicación especial número 2-“.

 

 

ESTACION CONSOL DE ARNEIRO (LUGO) – (Datos técnicos de 1957) 

 

Situación :  Latitud 43º 14’ 53’’,29 N.  Longitud 7º 28’ 55’’,89 W.

Frecuencia : 285 KHz. (1052,6 metros).

Tipo de onda : A 1.

Potencia : 1,5 Kwatt.

Características de emisión :

a)   Emisión omnidireccional = Indicativo LG (.-.. –.) y raya larga durante 60 segs.

b)   Emisión de orientación = Puntos de 1/6 de seg. y rayas de 5/6 de seg. durante 60 segs.

Período total : 120 segundos.

Horario de emisiones : Continuo.

Sectores utilizables : Del 019º al 157º y del 199º al 337º.

 

 

ESTACION CONSOL DE ARNEIRO (LUGO) – (Datos técnicos de 1966) 

 

Situación :  Latitud 43º 14’ 53’’,29 N.  Longitud 7º 28’ 55’’,89 W.

Frecuencia : 285 KHz. (1052,6 metros).

Tipo de onda : A 1.

Potencia : 1,5 Kwatt.

Características de emisión :

a)   Emisión omnidireccional = Indicativo LG (.-.. –.) durante 5,0 segs.; silencio 2,5 segs.

b)   Emisión de orientación = Puntos y rayas durante 30 segundos.

c)   Omnidireccional también = Silencio 2,5 segs.; raya larga 17,5 segs.; silencio 2,5 segs. 

Período total : 60 segundos.

Horario de emisiones : Continuo.

Sectores utilizables : Del 019º al 157º y del 199º al 337º.

 

 

Para ya finalizar esta entrada, se representa una “fotografía” de un corte horizontal del diagrama de radiación en un instante determinado de la rotación lenta del mismo.

 

 

 

Los radiofaros Consol (Elektra-Sonne) – (8) Generalidades técnicas de Consol y otros sistemas hiperbólicos

 

   

 

El sistema de posicionamiento Consol se engloba dentro de los sistemas de posicionamiento hiperbólicos. Los sistemas más conocidos de este tipo fueron fundamentalmente tres, a saber, el sistema Decca, el sistema Loran y el que aquí me ocupa, el Consol. El hecho de que reciban este nombre de hiperbólicos deriva de la filosofía implícita en la recepción de las señales. La característica común de los sistemas hipérbolicos es que la diferencia de fases o de tiempos entre señales emitidas desde antenas diferentes de la misma estación, en el momento de su recepción, sirve para determinar la línea de demora que media entre el receptor y la estación emisora, o al menos una de las posibles –como sería en el caso de Consol-. Como es lógico y sobradamente conocido, el lugar matemático espacial en el que la diferencia de distancias a dos puntos diferentes se mantiene constante es un hiperboloide de revolución. Pues bien, si entre una antena y el receptor la onda sin modular (CW) tarda x segundos, y si entre otra antena de la misma estación y el mismo receptor tarda x + y segundos, la diferencia entre ambos tiempos, esto es, y segundos, o respectivamente, entre ambas fases, lleva parejo un determinado hiperboloide de revolución, lugar geométrico en el que el receptor arrojaría la misma medida. Por lo tanto, se sigue inmediatamente de esto que una medida basada en un único par de antenas no sería operativa, por dar lugar a ambigüedad. Es estrictamente necesario conocer una aproximación a la línea de demora mediante radiogoniometría, y disponer de otro hiperboloide de revolución que se corte con el primero en algunos puntos entre los cuales se halla el de la verdadera posición del receptor. Entre esas medidas se resuelve el problema de la ambigüedad. Esto se podía hacer empleando distintas escuchas con relación a distintas estaciones, o bien, como sucede con Decca y Loran, con diferentes medidas obtenidas en relación a distintos pares de antenas dentro de cada estación. 

 

 

El sistema Decca estaba basado en estaciones emisoras –o cadenas Decca- formadas normalmente por tres o cuatro antenas, ubicadas en diferentes lugares relativamente próximos entre sí y formando una figura geométrica que podía variar. La filosofía del sistema Decca de cuatro antenas se basaba en que una de las antenas iba asociada al transmisor maestro, que emitía una onda continua –esto es, CW- a determinada frecuencia. Las otras tres antenas recibían esa señal, y esa señal recibida era procesada por un conversor de frecuencia que la multiplicaba por una determinada relación, pasando esa señal a ser transmitida, despúes de amplificarla, en cada antena esclava. Por lo tanto, como se deduce de esto, no se transmitía la misma portadora en las cuatro antenas, ya que ello las haría indistinguibles en el receptor. Como la diferencia de fase entre la portadora maestra y una de las señales esclava es en recepción dependiente de la diferencia de distancias que han recorrido ambas ondas, así como de la frecuencia empleada en la antena maestra y del factor que relaciona la onda emitida en cada par maestra-esclava, al final esa diferencia de fase, o de tiempos de propagación, podía ponerse en relación directa con un determinado hiperboloide relativo a cada par maestra-esclava, y arrojaba un valor numérico de diferencia de fase que podía ser llevado a un sistema de presentación. El sistema de presentación de Decca consistía en tres marcadores con forma de reloj, uno para la diferencia Rojo, otro para la diferencia Verde y otro para la diferencia Morado. Cada reloj estaba asociado a un par de antenas maestra-esclava, de tal modo que en la antena receptora se recibían tres ondas a tres distintas frecuencias, y la diferencia de fase entre cada par de ondas se representaba en cada uno de los tres relojes. Cada uno de los tres relojes recibía pues un par de señales que eran transformadas en frecuencia por dos factores diferentes en dos ramas circuitales distintas, para ponerlas a ambas en la misma frecuencia, tras lo cual se medía la diferencia entre sus fases, con un discriminador de fase, y ese resultado pasaba después al reloj correspondiente. Por lo tanto, como cada reloj iba asociado a un hiperboloide diferente, la intersección de los tres lugares geométricos arrojaba -en un mapa convenientemente marcado con las hipérbolas- la posición del navío o avión donde se hallaba el receptor, en relación a la estación emisora.

 

 

El sistema Loran también se basaba en la filosofía hiperbólica, sólo que en este caso cada estación estaba formada únicamente por tres antenas separadas entre sí -aunque en algunos lugares se construyeron cuatro-, en las cuales un tren de pulsos con un cierto intervalo de repetición modulaba una onda continua. Entre la transmisión de cada par de antenas se añadía además un cierto retardo. El sistema de lectura consistía en un receptor que alimentaba un tubo de rayos catódicos (TRC), que al recibir las ondas desfasadas entre sí correspondientes a la recepción de cada par de antenas, dibujaba en pantalla –si la recepción era la adecuada y no había otros ecos- dos pulsos separados por un cierto tiempo. Este tiempo de diferencia daba idea del hiperboloide parejo a cada par de antenas y la intersección entre los dos hiperboloides daba la posición del navío. También se podían usar estaciones Loran diferentes para ver la intersección de las líneas de demora correspondientes.

 

  

 

El sistema de posicionamiento Consol, el que se empleaba en la estación radioeléctrica de Arneiro, se basaba en modular tres ondas continuas de la misma frecuencia –una por antena dentro de la estación, la cual tenía tres antenas- mediante una variación temporal de sus desfases recíprocos, añadiendo un desfasaje entre las dos antenas de los extremos variable y periódico en el tiempo y formado por una parte en forma de tren de pulsos cuadrados de 180 grados de amplitud más otra parte variando en forma de diente de sierra. De este modo, gracias al desfasaje variable de las tres señales emitidas en las tres antenas, se lograba un patrón para el diagrama de radiación con varios lóbulos que iban girando alrededor desde el momento de inicio de cada barrido. Para una ubicación genérica en relación a una determinada estación emisora, había momentos en los que las dos ondas y la del mástil central llegaban las tres perfectamente enfasadas, dando lugar a que en ese instante la amplitud entre puntos y rayas fuera máxima; momentos en los que estaban enfasadas las ondas extremas pero en contrafase con la onda central, dando lugar a una amplitud entre rayas y puntos máxima; y momentos en los que las dos ondas extremas estaban en fase y a su vez desfasadas 90º en relación a la central, momento de equiseñal; con todos los  momentos intermedios entre ellos con variación continua. Esto por lo que respecta a la amplitud de la señal demodulada, pero en relación a su forma, resulta lógico el saber que en el instante de equiseñal (amplitud intermedia), las dos señales de las ondas extremas, alternando puntos y rayas, con parte real nula de ambos fasores, daría lugar a una onda demodulada constante, porque en ese momento sus fasores tenían un valor de más/menos la unidad imaginaria, arrojando un resultado intermedio al combinarlas con el fasor de la estación central; mientras que antes o después de la equiseñal serían los puntos (o respectivamente rayas) los que prevalecerían porque los fasores de las ondas de los mástiles extremos formarían ángulos suplementarios para las dos en el momento del punto (o respectivamente raya) y posición simétrica de los fasores en el momento de la raya (o respectivamente punto) -simetría respecto al eje imaginario con los fasores por debajo del eje real-, con ángulo distinto a 90º, con respecto al fasor de la onda central. Eso tendría la consecuencia de que uno de los signos se oiría más fuerte que el otro, dando lugar a puntos fuertes intercalados con rayas débiles antes de la equiseñal; y otro tanto ocurriría después del instante de equiseñal si cambiamos la palabra “puntos” por la de “rayas”, con lo cual para cada ubicación concreta el operador de radio oía primero un determinado número de puntos (o de rayas) seguido después de otro determinado número de rayas (respectivamente de puntos). Esta descripción se correspondería con cada ciclo completo de señal de orientación, aunque en una posición determinada de escucha la señal recibida podría comenzar su evolución en cualquiera posición del mismo. Se ha escrito la palabra “viceversa” en varios lugares, porque dependiendo de donde se halle el receptor, oirá primero las rayas más fuertes que los puntos o al revés. Operativamente, gracias a esos dos números de puntos con rayas inapreciables y rayas con puntos inapreciables, anteriores y posteriores respectivamente a la equiseñal, pareja a las sucesivas diferencias de fase de ambas antenas extremas, al ir barriendo los haces el espacio, se podía llevar a cabo la obtención de la línea de demora en relación a la estación que se estaba escuchando, para lo cual el operario podía recurrir a planos debidamente señalizados con la posición de la estación y las líneas rectas que salen de ella en todo su alrededor, que no son sino aproximaciones de las hipérbolas verdaderas. Es por esto que el sistema Consol no podía emplearse en las proximidades de cada estación, dado que en dichas proximidades las hipérbolas no son aproximables por rectas y tienen una notable componente curva, lo que origina una mucho mayor imprecisión. Esto ya condicionaba de por sí el emplazamiento que debía elegirse para las estaciones, que como es lógico no se situaban justo en la costa sino tierra adentro. Antes de cada barrido la antena central de la estación emitía una onda continua modulada con un código Morse identificador de la estación, además de la propia portadora sin modular, señal que se propagaba ciertos segundos antes del inicio del barrido. Esta señal isotrópica de baliza no direccional servía para que el operario del navío o del avión buscase la dirección de mínimo de recepción con el radiogoniómetro –instrumento empleado para determinar una aproximación a una línea de demora con respecto a un cierto transmisor que sintonizamos-. De este modo se obtenía una aproximación a la línea de demora, que era empleada después de recibir la sucesión de puntos y rayas de la segunda parte de la transmisión –o parte Consol de la señal- para eliminar las ambigüedades inherentes a este sistema. Esto sucede porque el hecho de emitirse varios lóbulos que se van moviendo por cada lado tiene como consecuencia que en diferentes lugares muy distantes entre sí se puede escuchar exactamente la misma secuencia de puntos y de rayas, y gracias a la aproximación obtenida con el radiogoniómetro en la recepción de la señal NDB –Non Directional Beacon- se podía discernir verdaderamente en cual de los radiales se hallaba el navío. Por lo tanto, si con una estación obtenemos un radial o línea de demora, es necesario al menos el escuchar otra estación después para determinar el punto de corte de ambas. Esto no era problema, dado que en Europa existieron estaciones Consol en Arneiro, en Sevilla, en Ploneis, en Stavanger, durante la II Guerra Mundial, y aditivamente en Bush Mills y muchas otras ubicaciones del mundo ya después de la confrontación. 

  

  

 

En las imágenes mostradas en esta entrada se pueden apreciar gráficamente diferentes aspectos relativos a los sistemas hiperbólicos, en concreto sólo he colocado imágenes de los sistemas Decca y Loran, puesto que Consol lo trataré con más detalle en lo sucesivo. En la primera imagen se advierte la representación del corte de los hiperboloides con la superficie terrestre, que da lugar como es sabido a hipérbolas -en realidad no son estrictamente hipérbolas, ésto sucedería si intersecáramos los hiperboloides con un plano, pero en realidad dichos hiperboloides se intersecan con una figura muy parecida a un elipsoide de revolución (el planeta)-.  Se representan diferentes hipérbolas parejas a diferentes diferencias de fase medidas en dos de los decómetros o relojes de presentación de Decca (había tres relojes de presentación o decómetros, pero bastaba con la medida de dos de ellos para averiguar la posición). Se observa como las dos curvas cuyas diferencias de fase características (una curva para cada diferencia), que han sido medidas, se cortan en un punto, que sería el lugar en el que se hallaría el navío. La segunda imagen representa el discriminador de fase a válvulas de vacío, las cuales operaban como diodos, que se empleaba para suministrar la señal a los decómetros. La tercera imagen es una fotografía que muestra la apariencia real de los decómetros. La penúltima imagen representa la obtención de la posición mediante el sistema Loran, y finalmente la última imagen es una fotografía del sistema de recepción y presentación de Loran, en la que se puede ver una pequeña pantalla que era marcada con el haz de electrones de un tubo de rayos catódicos. Las fotografías han sido tomadas del libro de mediados de siglo titulado “Radar and electronic navigation”, del autor G.J.Sonnenberg. 

   

Los radiofaros Consol (Elektra-Sonne) – (7) Fotografias de antes de la caida

  

 

 

Reproduzco aquí algunas fotografías de la antena central de la estacion Consol de Arneiro (Cospeito), algún tiempo antes de su caída. Actualmente no ha quedado nada de ellas.

 

 

Se pueden observar perfectamente las riostras que sujetaban a la torre desde varias direcciones, la cual levitaba cuando había viento, puesto que en el suelo estaba simplemente apoyada, y eran estos tirantes los que impedían su caída.

 

Los radiofaros Consol (Elektra-Sonne) – (6) Datos biográficos de Ernst Kramar

 

A Ernst Kramar se le debe la implementación de lo que se conoció como sistema de posicionamiento Consol.

Nació en Klazno el 15 de junio de 1902, un pueblo próximo a Praga (actual República Checa). Sus estudios universitarios consistieron en ingeniería eléctrica en la ciudad de Praga, entre los años 1920 y 1925, en una universidad entonces llamada Deutsche Technische Hochschule. En el año 1926 se graduó como Doctor Ingeniero por el Barkhausen Institute (Universidad Técnica de Dresde). Comenzó entonces su verdadera andadura profesional.

En el año 1927, Ernst Kramar entró en la empresa C. Lorenz AG (Berlín), compañía anterior a SEL (Standard Elektrik Lorenz). En aquella época se dedicó a resolver diferentes problemáticas en torno a la radio, pero no empezó a resaltar como ingeniero hasta que en 1932 usó frecuencias de la banda VHF con fines de radionavegación, desarrollo que recibió el nombre de Lorenz Landing System, del cual el actual ILS usado en aeropuertos es una mejora, del mismo modo que las balizas VOR, las cuales dan gran información de navegación a los pilotos.

En la Segunda Guerra Mundial, Ernst Kramar trabajó en técnicas de rádar y fue jefe de desarrollo de sistemas de radio en Pforzheim y Stuttgart.

En colaboración con los demás ingenieros de las compañías en las que trabajó, fueron desarrolladas un gran número de patentes, más de 85, lo que le valió un gran número de méritos y premios, tales como la Lilienthal Medal (1937), la Medalla de Oro de la Asociación Alemana para la dirección y navegación (Deustche Gesellschaft für Ortung und Navigation), y la Gran Cruz de la Orden del Mérito Nacional de la República Federal Alemana (1969).

Como resumen de todo esto, se podría decir que Ernst Kramar fue un reconocido científico que se adaptó a diferentes regímenes políticos durante su vida y que colaboró con el desarrollo técnico de Alemania, lo cual le valió múltiples condecoraciones. Sus desarrollos se han mantenido vigentes para el bien de los navegantes ya después de la Segunda Guerra Mundial, y han supuesto una inmensa aportación a la tecnología de las comunicaciones en el siglo XX.

 

Los radiofaros Consol (Elektra-Sonne) – (5) Fotos posteriores a la caída de las torres

 

 

 

Inserto en esta entrada las fotografías que fueron tomadas por mi amigo Víctor uno de los días inmediatamente posteriores a la caída de las torres centro y sur de la estación Consol de Arneiro (Lugo).

 

 

Los radiofaros Consol – (4) Fotos del estado actual

 

 

He visitado los restos de la antigua estación radioeléctrica Consol de Arneiro (Lugo).

En este apartado me limitaré a insertar las fotografías que he tomado. Se puede apreciar que la antena que ocupaba la posición central de las tres, la que sale en las fotos, yace sobre el terreno, y ya en parte desguazada. Esta antena y la antena Sur cayeron al suelo durante el pasado temporal Klaus. La antena Norte había caido ya hace un par de años con motivo también de fuertes vientos racheados.

La foto de arriba representa la base sobre la que estaba apoyado el pie de esteatita de la torre central. Si ese punto de apoyo no aislara la antena de la tierra, ésta no desempeñaría su función, sino más bien la de pararrayos.

La siguiente foto representa una vista de la antena en su posición yacente sobre el suelo. Al fondo se puede apreciar el capuchón capacitivo que permitía a la antena una longitud eléctrica “aparente” más aproximada a la cuarta parte de la longitud de onda de transmisión que la de la propia antena en sí, como se desprende gráficamente de la carga en un extremo de una línea de transmisión con un condensador, observada en una carta de Smith, y como se puede razonar por el hecho del desfasaje que introduce el condensador a un fasor de corriente nulo en el extremo de la línea de transmisión -en el aire no fluye corriente-, que consigue un fasor de corriente impresa más homogéneo a lo largo de ésta en el tramo que “de ella” abrimos como antena, lo que garantiza un mayor nivel del campo radiado, con ahorro de altura y material.

 

 

La siguiente foto representa el mencionado capuchón equivalente electromagnéticamente a la placa de un condensador.

 

 

En la foto que sigue se puede ver el pozo que había en el complejo, dedicado a suministro del mismo.

 

 

En la siguiente fotografía se representa el garage donde se hallaban los generadores de corriente, que es adyacente a las habitaciones y cocina de los operarios (en el mismo edificio).

 

 

Finalmente, en esta última foto se puede observar el edificio donde se hallaba el transmisor y la circuitería de control.

 

 

Los radiofaros Consol (Elektra-Sonne) – (3) Datos históricos

 

Utilizo aquí como fuente de datos históricos los brillantes artículos publicados en la web por D. Ángel Valín Bermúdez y D. Serafín R. Trashorras, con las correcciones que he creido oportunas.

Según parece, ya avanzados los años 30, se le pidió a algunas empresas la mejora del sistema “American Radio Range”. Se trataba de un sistema radiante usado para el posicionamiento, es decir, para obtener la longitud y latitud de un punto en el planeta, allá donde ese sistema llegara con cobertura. El ingeniero encargado de desarrollar el sistema Consol -la mejora pretendida- fue el Doctor Ernst Kramar, el cual en aquel entonces (1938) trabajaba en la empresa Estándar Elektrik Lorenz.

Una vez activo, el sistema Consol cubría todo el Atlántico Norte , y además de la estación de Arneiro (Lugo), existían estaciones en Stavanger (Noruega), Ploneis (Francia), Guillena (Sevilla), y Bush Mills (Gran Bretaña) (esta última operativa sólo después de la II Guerra Mundial), todas ellas operando a distintas frecuencias de portadora para garantizar la ausencia de interferencias y todas ellas ubicadas en diferentes puntos de frecuencia de lo que se conoce como banda BEACON (Banda para balizas).

El general Franco concedió a Hitler potestad para instalar las estaciones de Arneiro y Guillena en Lugo y Sevilla respectivamente. Según los datos de que dispongo, ambas fueron construidas en la década de los años 40, para ser más exactos allá por el 1942. También fue utilizado por los alemanes el Aeródromo de Rozas, en teoría como soporte logístico y lugar de suministro para las antenas, aunque su construcción fue anterior (ya existía).

Existen reseñas de distintas fuentes de que las antenas fueron utilizadas por ambos bandos, tanto el aliado como el nazi. Esto entra dentro de lo posible, pues para operar en alta mar o en el aire con el objeto de recibir la señal y determinar la posición,  el equipo no tenía por qué ser muy sofisticado. En realidad bastaba con un receptor de radio operando en la banda BEACON, con la suficiente selectividad en frecuencia como para distinguir las distintas portadoras de frecuencias próximas entre sí dentro de la reseñada banda, y a poder ser también sería útil un radiogoniómetro, aunque no era imprescindible, más adelante entraré en estos temas con detalle.

En principio los aliados lo único que tenían que conocer eran las frecuencias empleadas por las diferentes estaciones ubicadas en Europa, y por técnicas de radiogoniometría, usando la parte temporal de señal de radiofaro NDB (Non Directional Beacon), no sería preciso conocer más para establecer la posición, aunque sería deseable saber los convenios empleados para la señal CONSOL (segunda parte temporal de la señal transmitida), los cuales entiendo que eran guardados en secreto por el bando alemán. Desconozco el grado de conocimiento de los aliados respecto al sistema Elektra-Sonne, aunque para operar efectivamente les bastaría con conocer las frecuencias y posición en el mapa de cada emisora y con tener radiogoniométros en banda BEACON.

Decía que existen reseñas acerca del empleo por parte de los aliados de CONSOL. Algunos llegan a afirmar que en un momento en que la estación sufrió avería fueron los aliados quienes suministraron piezas de recambio. Personalmente dudo de estas afirmaciones, entre otras cosas puesto que en el lugar no existen testigos de tal hecho, y además entiendo que los alemanes procurarían el mayor secretismo, pues el Atlántico Norte era vital para ellos con fines estratégicos.

Una vez ya terminada la II Guerra Mundial, la estación pasó a depender del Ejército del Aire de España hasta el año 1962, cuando su control se trasladó a Aviación Civil. Prestó servicio para la navegación aérea hasta 1971. Las antenas se apagaron en 1980.

Actualmente, sólo quedan los restos, y dentro de poco no quedará ni eso. Las tres torres radiantes están en el suelo, las dos últimas cayeron debido a un vendaval reciente, y la primera hace ya al menos un par de años. No queda nada de la estación de control, y del barracón de generadores de corriente. Sólo están los edificios: el que albergaba el transmisor y la circuitería, el barracón de cocina y dormitorios, el garage de grupos electrógenos, y un pozo. Pero de lo que había dentro no ha quedado absolutamente nada. Por dejadez de los organismos oficiales el que podría haber sido un precioso museo tecnológico e histórico ha quedado en la forma de edificios en ruinas. Una verdadera pena.

 

Enlaces a páginas relacionadas :

 

Web de Serafín R. Trashorras : “Torres de Arneiro”

http://uboat.freehostia.com/arneiro/arneiro.htm

 

Fotos de equipos de transmisión :

http://www.jproc.ca/hyperbolic/consol_spain.html

 

Información militar :

http://josecadaveira.tripod.com/militaryruins/id80.html

 

Página web alemana :

http://www.seefunknetz.de/consol.htm

 

Wikipedia :

http://es.wikipedia.org/wiki/Torres_de_Arneiro