Archive for the ‘ Ciencia ’ Category

Los números computables, la máquina Enigma y Alan Mathison Turing

 

 alanturing

 

A mediados del Siglo XX, en el año 1936, un matemático llamado Alan Mathison Turing publicó un artículo de investigación que revolucionó el mundo de la lógica matemática. A principios de siglo, otro matemático de nombre David Hilbert planteó un conjunto de 23 problemas no resueltos por aquel entonces, de vital trascendencia para la disciplina matemática, a la espera de que algunas personas los resolvieran. Hilbert tenía una concepción optimista de las matemáticas, y creía que todo podía ser demostrado, tenía una gran confianza en el poder de esta rama del conocimiento.

Aunque Hilbert no lo incluyó en su lista de problemas de 1900, veintiocho años más tarde otra conferencia de Hilbert hizo trascender otro desafío a las matemáticas modernas, conocido como Entscheidungsproblem, esto es, el problema de la decisión. El problema de la decisión consiste en su planteamiento más general en averiguar si existe un algoritmo genérico que decida si un problema matemático tiene o no demostración. En el planteamiento de Turing, éste lo particularizó, indagando acerca de si existe un procedimiento efectivo con el que se pueda averiguar si una fórmula del cálculo funcional es un teorema o no lo es. En su artículo “Sobre los números computables, con una aplicación al Entscheidungsproblem”, publicado por Turing en 1936 se resuelve esta cuestión, llegándose a la afirmación de que tal algoritmo genérico no existe.

Turing utilizó dos demostraciones para lanzar tal afirmación, consiguiendo un artículo de una gran belleza, originalidad y elegancia.

Para llegar a sus conclusiones, Turing parte de unas máquinas hipotéticas, que en su honor se llamarían después “máquinas de Turing”, y cuyo comportamiento viene a ser parecido al de un automáta o sistema de control secuencial.

Una máquina de Turing es un dispositivo ideal que en cada momento sólo lee el contenido de una única casilla de una cinta de papel que se prolonga en ambas direcciones. En función del contenido de la casilla sobre la que está situada y de la configuración interna (lo que sería el estado del autómata), la máquina bascula hacia otro estado distinto, y después de ésto, realiza alguna operación dependiente del estado, como desplazarse una casilla a la izquierda, o borrar el contenido de la casilla o escribir un símbolo sobre la misma. Se trata pues de un dispositivo secuencial, que opera en base a las secuencias de valores de entrada y de estados de configuración.

Turing también definió lo que ahora se conoce como “máquina de Turing universal”, que es un tipo de máquina que recibe la descripción del comportamiento de una máquina de Turing cualquiera y que reproduce su comportamiento. Tal descripción la recibe como una secuencia de números de entrada que se denominan “número de descripción” o “descripción estándar” de la máquina. Una vez introducido este número en una máquina de Turing universal, ésta imita la máquina de Turing cuyo número de descripción es el introducido. Esta máquina universal vendría a ser como un ordenador con un programa en ejecución, pues es capaz de ejecutar un algoritmo que le pasemos mediante el “programa”. Y una máquina de Turing no universal es en realidad lo equivalente a un programa informático o a un sistema electrónico digital secuencial.

Además, el autor del artículo que aquí describo, distinguió entre máquinas que funcionan sin circularidad y máquinas que funcionan con circularidad. El segundo de estos tipos no es deseable para una máquina de Turing pues significaría que el algoritmo que hemos programado en ella con la tabla de configuración (o con el número de descripción) no llega a pararse nunca, sino que vuelve infinitas veces a operar del mismo modo según el programa, y por tanto dicho algoritmo no genera un resultado.

Si Turing teorizó en base a estas idealizaciones y abstracciones de máquinas de Turing, y máquinas libres de circularidad, lo hizo porque las fórmulas del cálculo funcional tienen un equivalente numérico en base a ciertas reglas, algo similar a lo que hizo Kurt Gödel a las fórmulas lógicas de primer orden en su artículo sobre incompletitud, lo que en dicho contexto se conoce como Gödelización. En base a ciertas premisas, se puede conseguir el equivalente a cualquier fórmula de forma biyectiva, esto es, uno a uno, y así, según esta forma de razonar, una demostración no será otra cosa que una secuencia de números en cierto orden. De aquí viene el uso de máquinas de Turing, pues si una máquina de Turing obtiene una secuencia de números computables, en cuya génesis intervienen las reglas mencionadas, y que siguen a la entrada, en la cual se codifican las premisas de la demostración, y al final se para en el número equivalente a una cierta proposición, éllo significará que de cierta premisa se llega a cierta conclusión, y que ésta es un teorema.

La primera de las demostraciones del teorema se basa en lo siguiente: supongamos que existe un procedimiento que decide si una máquina de Turing se va a parar (no tiene circularidad). Supongamos que hacemos una lista con todas las secuencias posibles de números que proporciona la máquina de Turing ante números de entrada crecientes para un algoritmo (o máquina de Turing) fijo, que no presente circularidad, cosa que podemos hacer dado el supuesto de la existencia de la máquina que decide sobre la parada. Supongamos que esta lista la ampliamos para todas las máquinas de Turing posibles con parada, cada una con la lista de secuencias finitas de números computados. Si ahora empleamos un razonamiento de diagonalización al estilo de Cantor se obtiene lo siguiente:

Tomamos el primer elemento de la primera secuencia de la lista y lo incrementamos en uno, tomamos el segundo elemento de la segunda lista y lo incrementamos en uno, tomamos el  tercero de la tercera lista y lo aumentamos en uno,… tomamos el N-ésimo, para cualquier N, de la N-ésima lista y lo incrementamos la unidad…. Así llegamos a una secuencia que es computable, pero que no figura en la lista de todas las posibles secuencias computables. Es computable, puesto que el proceso de extraer los números de la diagonal y de incrementarlos en uno, a partir de una lista de secuencias computables, es programable en una máquina de Turing. Bastaría con conectar los resultados de todas las máquinas que generan todas las secuencias computables, trabajando en paralelo, a una máquina que es secuencial y por tanto de Turing. Con los actuales diseños electrónicos digitales, esta máquina se podría construir con un demultiplexor de las secuencias computadas, a cuyas líneas de selección de canal de entrada se les aplica un contador, seguido de un sistema combinacional que suma la unidad al número situado a su entrada. Se deduce entonces que el algoritmo o máquina de Turing que obtiene la susodicha secuencia es una operativa computable, pero al no figurar esta nueva secuencia en la lista original que supuestamente contenía todas las secuencias computables posibles, se llega a una contradicción, y el supuesto de la existencia del algoritmo de decisión es falso.

La segunda de las demostraciones es totalmente diferente: supongamos que existe el algoritmo que decide sobre la parada o no de una máquina cualquiera T (ausencia o no de circularidad). Supongamos que conectamos esta máquina D de decisión a una máquina de Turing universal U. El funcionamiento de DU consiste en que a D le pasamos el número de descripción de la máquina T, equivalente al algoritmo cuya parada queremos testear, en caso de decidir que es circular el funcionamiento termina ahí y no hay salida, en caso de no circularidad la máquina D le proporciona a la máquina universal U el número de descripción para que imite la máquina T. La máquina DU así construida es una máquina de Turing libre de circularidad pues sólo da una secuencia finita de salida en el caso de que el algoritmo D cuya existencia suponemos decida que la máquina T no es circular, y en caso de ser circular también da una secuencia de salida finita (secuencia vacía). Ahora bien, supongamos que a la propia máquina DU le introducimos el número de descripción de esa misma máquina DU, el cual existe, por ser DU máquina de Turing. ¿Qué pasará?. Pues pasará que DU verificará que DU no es circular, cosa que suponemos, y a continuación la imitará tomando el número de descripción de DU y viendo que ésta no es circular, con lo cual le pasará el número de descripción de DU de nuevo a sí misma, y así indefinidamente, con lo cual la máquina DU es circular, lo cual contradice la hipótesis de no circularidad de DU y por tanto de la existencia de la máquina D.

Por tanto, no existe un algoritmo genérico que determine si una máquina de Turing cualquiera y, por tanto, una secuencia lógica de razonamientos, terminará su evolución en un resultado. De esta manera, en principio no tenemos forma de saber si una fórmula del cálculo funcional, traducidos sus símbolos a números, tiene demostración o no. (No sabemos de antemano si es o no un teorema, con lo cual ignoramos su naturaleza en cuanto a verdad o falsedad). Ésto implica que también podríamos extender este resultado a un problema matemático genérico, dado que hemos encontrado un contraejemplo que niega ya por sí mismo el enunciado “existe un algoritmo que decide si cualquiera enunciado tiene demostración”, aunque la prueba de Turing relativa al EintschengdungProblem estaba específicamente parcelada a las fórmulas del cálculo funcional. No obstante, en su trabajo hace una descripción muy pormenorizada del funcionamiento de las máquinas de Turing y del concepto de número computable, entendido como aquél que puede ser obtenido mediante cómputo en un número finito de pasos.

 

enigma

 

Alan Turing fue por lo tanto el principal fundador de las bases teóricas de la informática (quizás su principal aportación fue el concepto de computador de programa almacenado en memoria), aunque no debemos olvidar que se debe a John Von Neumann la primera descripción pormenorizada de la arquitectura de computadores que lleva su nombre y que aún hoy se utiliza, y que Claude Shannon desarrolló la teoría matemática de la información, ambos coetáneos suyos. Junto a un equipo de investigadores liderado por el ingeniero británico Tommy Flowers, Turing creó uno de los primeros ordenadores de la historia, el “Colossus”, que en realidad no era un computador de propósito general o máquina de Turing universal. El objetivo de “Colossus” era descifrar los mensajes de comunicaciones emitidos por los nazis, ya avanzada la II Guerra Mundial, encriptados con la máquina “Tunny”, creada por la empresa alemana Lorentz. Esta máquina operaba en código binario y alimentaba con un chorro de bits un teletipo. Dicho flujo transmitido se obtenía a partir de dos sumas binarias sucesivas del chorro original o mensaje en claro pasado al código binario, con dos claves binarias obtenidas mediante el concurso de 12 rotores mecánicos, que se emitía con el teletipo y su propia idiosincrasia de señales. Estos mensajes eran de vital importancia, dado que Tunny era utilizada para las comunicaciones del Alto Mando Alemán. Además de la creación de Colossus y de sus contribuciones a la lógica matemática, Turing fue figura clave en la desencriptación de los mensajes codificados por los alemanes mediante la máquina Enigma, gracias a su diseño y puesta a punto de las máquinas bomba que se usaban para agilizar el descifrado de Enigma. En realidad las máquinas bomba no fueron un invento original del protagonista de esta entrada, ya que que en los primeros embites de la guerra, otro grupo de matemáticos y criptógrafos polacos liderados por el matemático Marian Rejewski construyeron máquinas bomba para agilizar la rotura del código Enigma original. Sus desarrollos fueron comunicados a las inteligencias francesa y británica. Pero los nazis perfeccionaron a base de otros añadidos la codificación Enigma original. Por ello los criptógrafos de Bletchley Park, lugar donde se libró la verdadera guerra contra Enigma y donde Alan Turing trabajó, se vieron sumidos en la total oscuridad en lo que al desciframiento se refiere. Bletchley Park está situado a unos 80 km al Norte de Londres, y allí se construyó un complejo de barracones junto a una mansión victoriana ya existente, utilizándose para las operaciones de la escuela gubernamental de códigos y cifrado (GC&CS), entidad vinculada al servicio secreto británico. La figura de Turing en este lugar fue realmente muy importante, ya que rediseñó las máquinas bomba gracias a los “pellizcos” que los aliados obtuvieron consiguiendo máquinas Enigma y documentación de U-boats capturados, y gracias a su portentosa inteligencia. La existencia del complejo de Bletchley Park fue el secreto mejor guardado de los aliados, y todo lo relacionado con él no fue desclasificado hasta muchos años más tarde del final de la guerra. De hecho, Winston Churchill, primer ministro británico a la sazón, y que fue una de las contadas personas que tenía conocimiento de que se estaban descifrando los mensajes, (que los alemanes consideraban, no sin justificación, indescifrables) en sus círculos más privados designaba a Bletchley Park como “mi oca de los huevos de oro que nunca cacarea”. Una vez terminada la II Gran Guerra, Alan M. Turing llevó a cabo diversas investigaciones pioneras en la biología matemática, relacionadas con la morfogenésis, y en el campo de la inteligencia artificial (a la que aportó los fundamentos y algunos conceptos como el que se conoce como “test de Turing”), usando para ello los primeros computadores que se estaban creando en Gran Bretaña.

Pero tal vez la hazaña de Turing que tuvo más trascendencia práctica -aunque desde luego no fue su mayor logro hablando en términos generales- fue romper el código Enigma de los submarinos nazis, conocido en Bletchley Park como “Shark”. Gracias a ello los convoyes de buques mercantes que viajaban desde Estados Unidos transportando suministros, pudieron ser salvaguardados, después de un gran número de bajas, evitándose la derrota británica en el momento crucial posterior a los bombardeos sobre Inglaterra, cuando Francia ya estaba ocupada por el ejército nazi.

La máquina Enigma brindaba un sistema de encriptación polialfabético con muchísimos alfabetos de sustitución, uno por cada avance de los rotores de la máquina, con lo cual para determinar el mensaje cifrado habría que conocer con exactitud los parámetros involucrados en la puesta en marcha de “Enigma”, esto es, la posición de los rotores y de las clavijas, y por supuesto poseer una Enigma idéntica a la “transmisora”. Un análisis de frecuencias complejo no bastaba para descifrar un mensaje, dado que aún a pesar de que el mensaje transmitido fuese largo, los alfabetos de sustitución se sucedían al pulsar cada tecla y no llegaban a repetirse.

 

enigma2

 

Enigma tenía la apariencia de una máquina de escribir, estaba alimentada por una pila, y su funcionamiento se basaba en cerrar circuitos de corriente continua. Cuando ésto ocurría, es decir, al pulsar cada tecla, la corriente fluía desde el teclado, pasando hacia el panel “stecker” o clavijero, que era configurable, y de éste iba al tambor de entrada, que estaba en contacto con el primer rotor. Cada rotor tenía dos superficies planas a ambos lados y 26 dientes, correspondientes a las 26 letras del alfabeto. Existían hasta cinco rotores con distintos cableados. En cada uno de esos rotores había un cableado diferente entre la interfaz de entrada, que una vez colocado contactaría con el rotor anterior (con el tambor de entrada para el primero de ellos), y su interfaz de salida (que ya posicionado estaba en contacto con el rotor siguiente). Después de la cara de salida del último rotor había un reflector, con el que se conseguía que, a igual configuración de la máquina, una letra del teclado fuese la misma que la letra iluminada en el panel luminoso obtenida por la pulsación de su traspuesta, es decir que Enigma sirviera tanto para cifrar como para descifrar si se usaba la misma clave. Desde el reflector la corriente seguía fluyendo por los rotores en sentido inverso al anterior, pero siguiendo otros caminos eléctricos diferentes; y de nuevo a través del clavijero pasando por otra clavija distinta, y de ahí a un terminal de la bombilla de la letra cifrada (o descifrada según el extremo de comunicaciones en que se operase). Como el otro terminal de cada bombilla estaba conectado con uno de los terminales de cada pulsador, al pulsar sobre él se cerraba el circuito y se obraba el milagro, produciéndose además un avance de una letra del rotor de menos peso, que podía acarrear un avance del rotor siguiente al terminarse una vuelta completa del mismo. Esto mismo ocurría con el segundo rotor y sucesivos, y así hasta las 26 x 26 x 26 pulsaciones en la máquina de 3 rotores, momento en que se volvía a tener la misma configuración de rotores que en la primera letra codificada y por tanto el mismo alfabeto de sustitución. Una letra nunca se codificaba en dos pulsaciones consecutivas con la misma letra cifrada, y asimismo una letra jamás se codificaba igual a sí misma, lo cual brindó a los criptógrafos de Bletchley Park un medio para obtener plantillas de letras posibles en un mensaje, constituyendo uno de los tendones de Aquiles que facilitaron el fracaso de Enigma.

Por si ésto solo de por sí no constituyera un sistema robusto, los alemanes lo pulieron aún más, ofreciendo a sus usuarios una logística que se ponía en práctica con determinada frecuencia, consistente en la actualización de documentación relativa a los rotores empleados cada día, el orden en que se colocaban (diferentes entre los distintos ejércitos de tierra, mar o aire), las letras de posición inicial en cada rotor, así como de las posiciones de las clavijas en el panel stecker, y las tablas de codificación de bigramas. Un bigrama es un conjunto de dos letras. En una tabla de 26 x 26 ítems se representaba para cada bigrama original el bigrama transformado correspondiente (era un esquema “hecho a mano” y que también podía variar). De este modo, el protocolo de cifrado establecía que para trabajar con la Enigma de 3 rotores era necesario en primer lugar consultar en la documentación los 3 rotores concretos del día, el orden en que se colocaban, y la letra que tenía que situarse en cada rotor, y además la configuración del clavijero. Después de ésto el operario transmisor elegía 3 letras del alfabeto al azar (la clave), que serían las letras de ventanilla iniciales para usar Enigma en la fase de codificación. Pero antes de ello, las codificaba mediante la Enigma recién configurada y colocaba en un papel cada letra obtenida emparejada con otra elegida al azar debajo de ella. Los tres pares de letras así obtenidos se transformaban mediante la tabla de bigramas y después esos tres bigramas resultantes se colocaban al principio del mensaje. Las 3 letras clave de partida eran las que servían para reconfigurar de nuevo los tres rotores elegidos, y a partir de este punto se empezaba a codificar el mensaje, comenzando la transmisión Morse con los tres bigramas obtenidos a partir de la clave en la operativa antes descrita, pero sin codificar con Enigma, es decir, tal cual se generaron; a lo que seguía ya el mensaje cifrado según lo que fuese “soltando” la máquina mediante los sucesivos cierres de circuitos de corriente. De esta manera, para descifrar se operaba de manera inversa para obtener la clave usada; es decir, se configuraba Enigma con los rotores, posiciones, letras, y clavijas concretos del día; luego se obtenían los 3 bigramas intermedios mediante la tabla de bigramas en sentido inverso. El paso siguiente era coger las tres letras superiores de dichos tres bigramas intermedios y pulsarlas en Enigma, obteniéndose las letras de los rotores empleadas como clave. Se reconfiguraban entonces con ellas los rotores colocándolas como “letras de ventanilla”, y se descodificaba pulsando las letras codificadas y obteniéndose las traspuestas (u originales).

No es muy difícil el darse cuenta de que el número de configuraciones posibles de Enigma era descomunal, del orden de más de diez mil billones de configuraciones. Por ello la máquina Enigma era un sistema muy robusto y dificilísimo de desencriptar. El sistema Enigma viene a ser parecido en cierto modo al cifrado Vigènere, que es también polialfabético, pero que tiene un número de alfabetos diferentes para codificar cada mensaje solamente igual al número de letras de la palabra clave. Enigma tenía una “letra de palabra clave” por cada posición de los rodillos, y éstos realizaban un avance por cada pulsación de una letra en el teclado, generándose en cada pulsación un nuevo alfabeto de sustitución para la letra siguiente.

Por su importante contribución al descifrado de los mensajes Enigma, Turing fue condecorado con la Orden del Imperio Británico.

La muerte de Turing fue prematura y triste. Se cree que se suicidó comiendo una manzana envenenada con cianuro, aunque la verdad no se conoce con certeza absoluta. En un juicio en el que tuvo que prestar declaración, derivado de un robo perpetrado en su casa, tuvo que confesar que era homosexual, y entonces ésto estaba penado por la jurisdicción británica. Le dieron como opciones ir a la cárcel o someterse a un “tratamiento” de castración química basado en hormonas. Eligió lo segundo, pero la consecuencia fue su pérdida de forma física (era un consumado atleta que incluso estuvo a punto de ser elegido para los primeros Juegos Olímpicos posteriores a la II Guerra Mundial, y ésto le afectó mucho) y las taras psicológicas que posiblemente perturbaron aún más su mente, cosa que para un científico destacado como él lo fue tiene que ser una gran desdicha, al saberse incapaz de pensar con claridad. En otras palabras, le hicieron la vida imposible. Pero sus contribuciones han trascendido por su importancia, para el goce de las generaciones presentes y venideras, y para el bien de la mayor cooperativa mundial, la ciencia; y es a él a quien se le puede atribuir el mérito de ser quizás el primero y mayor de los padres conceptuales de los computadores tal y como hoy los conocemos. Quién sabe a lo que llegaría un espíritu agudo y creativo como el de Turing si no muriese a la edad de 42 años. En cualquier caso, es meridianamente claro que la sociedad y en particular la justicia, no fueron lo que se dice recíprocos con él en relación a las impresionantes contribuciones a la Humanidad, en todo su sentido, con que este genio polifacético del Siglo XX nos obsequió.

 

Los radiofaros Consol (Elektra-Sonne) – (3) Datos históricos

 

Utilizo aquí como fuente de datos históricos los brillantes artículos publicados en la web por D. Ángel Valín Bermúdez y D. Serafín R. Trashorras, con las correcciones que he creido oportunas.

Según parece, ya avanzados los años 30, se le pidió a algunas empresas la mejora del sistema “American Radio Range”. Se trataba de un sistema radiante usado para el posicionamiento, es decir, para obtener la longitud y latitud de un punto en el planeta, allá donde ese sistema llegara con cobertura. El ingeniero encargado de desarrollar el sistema Consol -la mejora pretendida- fue el Doctor Ernst Kramar, el cual en aquel entonces (1938) trabajaba en la empresa Estándar Elektrik Lorenz.

Una vez activo, el sistema Consol cubría todo el Atlántico Norte , y además de la estación de Arneiro (Lugo), existían estaciones en Stavanger (Noruega), Ploneis (Francia), Guillena (Sevilla), y Bush Mills (Gran Bretaña) (esta última operativa sólo después de la II Guerra Mundial), todas ellas operando a distintas frecuencias de portadora para garantizar la ausencia de interferencias y todas ellas ubicadas en diferentes puntos de frecuencia de lo que se conoce como banda BEACON (Banda para balizas).

El general Franco concedió a Hitler potestad para instalar las estaciones de Arneiro y Guillena en Lugo y Sevilla respectivamente. Según los datos de que dispongo, ambas fueron construidas en la década de los años 40, para ser más exactos allá por el 1942. También fue utilizado por los alemanes el Aeródromo de Rozas, en teoría como soporte logístico y lugar de suministro para las antenas, aunque su construcción fue anterior (ya existía).

Existen reseñas de distintas fuentes de que las antenas fueron utilizadas por ambos bandos, tanto el aliado como el nazi. Esto entra dentro de lo posible, pues para operar en alta mar o en el aire con el objeto de recibir la señal y determinar la posición,  el equipo no tenía por qué ser muy sofisticado. En realidad bastaba con un receptor de radio operando en la banda BEACON, con la suficiente selectividad en frecuencia como para distinguir las distintas portadoras de frecuencias próximas entre sí dentro de la reseñada banda, y a poder ser también sería útil un radiogoniómetro, aunque no era imprescindible, más adelante entraré en estos temas con detalle.

En principio los aliados lo único que tenían que conocer eran las frecuencias empleadas por las diferentes estaciones ubicadas en Europa, y por técnicas de radiogoniometría, usando la parte temporal de señal de radiofaro NDB (Non Directional Beacon), no sería preciso conocer más para establecer la posición, aunque sería deseable saber los convenios empleados para la señal CONSOL (segunda parte temporal de la señal transmitida), los cuales entiendo que eran guardados en secreto por el bando alemán. Desconozco el grado de conocimiento de los aliados respecto al sistema Elektra-Sonne, aunque para operar efectivamente les bastaría con conocer las frecuencias y posición en el mapa de cada emisora y con tener radiogoniométros en banda BEACON.

Decía que existen reseñas acerca del empleo por parte de los aliados de CONSOL. Algunos llegan a afirmar que en un momento en que la estación sufrió avería fueron los aliados quienes suministraron piezas de recambio. Personalmente dudo de estas afirmaciones, entre otras cosas puesto que en el lugar no existen testigos de tal hecho, y además entiendo que los alemanes procurarían el mayor secretismo, pues el Atlántico Norte era vital para ellos con fines estratégicos.

Una vez ya terminada la II Guerra Mundial, la estación pasó a depender del Ejército del Aire de España hasta el año 1962, cuando su control se trasladó a Aviación Civil. Prestó servicio para la navegación aérea hasta 1971. Las antenas se apagaron en 1980.

Actualmente, sólo quedan los restos, y dentro de poco no quedará ni eso. Las tres torres radiantes están en el suelo, las dos últimas cayeron debido a un vendaval reciente, y la primera hace ya al menos un par de años. No queda nada de la estación de control, y del barracón de generadores de corriente. Sólo están los edificios: el que albergaba el transmisor y la circuitería, el barracón de cocina y dormitorios, el garage de grupos electrógenos, y un pozo. Pero de lo que había dentro no ha quedado absolutamente nada. Por dejadez de los organismos oficiales el que podría haber sido un precioso museo tecnológico e histórico ha quedado en la forma de edificios en ruinas. Una verdadera pena.

 

Enlaces a páginas relacionadas :

 

Web de Serafín R. Trashorras : “Torres de Arneiro”

http://uboat.freehostia.com/arneiro/arneiro.htm

 

Fotos de equipos de transmisión :

http://www.jproc.ca/hyperbolic/consol_spain.html

 

Información militar :

http://josecadaveira.tripod.com/militaryruins/id80.html

 

Página web alemana :

http://www.seefunknetz.de/consol.htm

 

Wikipedia :

http://es.wikipedia.org/wiki/Torres_de_Arneiro

 

Los radiofaros Consol (Elektra-Sonne) – (2) Declaración de intenciones

 

Comienzo con este apartado el conjunto de artículos dedicados al Sistema de Posicionamiento Consol. Para desarrollar esta tarea me he ayudado de la documentación histórica que se halla en internet publicada por D. ÁNGEL VALÍN BERMÚDEZ y D. SERAFÍN R. TRASHORRAS, pero únicamente los datos históricos, pues los detalles técnicos proceden de otras fuentes, en concreto, libros y manuales tanto nacionales como extranjeros de la década de los años 50. No he pedido permiso a los autores antes reseñados para usar los datos históricos que ellos han colgado en la red, pero entiendo que al mencionar sus nombres de forma explícita quedan resueltos los problemas de derechos de autor, y en cualquier caso pondré enlaces a sus páginas, para que sean visitadas desde esta web. Téngase en cuenta además que no pretendo reflejar lo ya publicado tal cual, sino procesar y elaborar el material y efectuar añadidos en base a lo que yo buenamente puedo aportar. Evidentemente tal procesado y filtro no podrá ser desarrollado para las reseñas históricas, las cuales son las que son.

Mi intención no es describir de forma super-exhaustiva el funcionamiento del sistema radiante, sino más bien hacer una introducción lo suficientemente elaborada de dicho sistema, y por ello entiendo no copiar todo lo que halle en internet o en otros medios al pie de la letra o con otras palabras, sino más bien documentar el tema con lo que conozco de este sistema, en base a lecturas de libros nacionales y extranjeros de mediados del siglo pasado y en base también a la actual teoría de antenas.

 

El problema de la longitud, relojes de péndulo y Christian Huygens

 

huygens

 

A mediados del siglo XVII (en el año 1648) Holanda obtuvo la independencia de España. Como para el desarrollo industrial y comercial era de vital importancia el desarrollo científico, Holanda se convirtió en un refugio parara intelectuales de las naciones europeas (entre ellos Galileo y Descartes).

Dado que este país se vio liberado del dominio español y en consecuencia dejó de contar con la flota naviera que España poseía, y era una nación pequeña, los actuales Países Bajos agudizaron su ingenio y se vivió un despertar de las ciencias y las artes que la puso a la cabeza de Europa en el desarrollo intelectual. 

Fue la época de pintores como Rembrandt o Vermeer. Ya en el terreno de la filosofía y de la ciencia, podemos reseñar a Spinoza, cuya filosofía panteísta fue alabada por Albert Einstein, un poco más tarde apareció también Leonard Euler, pero en concreto en esa segunda mitad del siglo XVII brilló con luz propia el científico, matemático e inventor Christian Huygens. Huygens fue el padre de la concepción ondulatoria de la luz, observó los planetas con los telescopios que fabricaba -el telescopio es un invento genuinamente holandés- y describió el sistema de anillos de Saturno, y muchas más cosas, pero lo que nos interesa en esta entrada es la invención del reloj de péndulo isócrono basado en la cicloide. 

Como se formaron en aquel entonces rutas comerciales con las Indias Orientales, fundamentalmente para comerciar la seda y las especies, eran necesarias unas cartas de navegación lo más precisas y exactas posibles. Para la cartografía era menester algún sistema que permitiera determinar con precisión la longitud de un punto determinado de la superficie terrestre.

El problema de la latitud se venía resolviendo desde antiguo por mediación del sextante y la altura sobre el horizonte de los astros. Pero para la longitud no había una solución satisfactoria, puesto que los cronómetros que existían eran muy sensibles a las oscilaciones del barco, y así la medida del tiempo era imprecisa.

El fundamento científico de la obtención de la longitud consiste en que si salimos de una localidad con un reloj sincronizado a las 12 del mediodía con el paso del sol por el meridiano local -momento de mayor altura del sol-, si a continuación navegamos, y después determinamos el paso del sol por el nuevo meridiano local atribuyendo a esta medida las 12 del mediodía de la nueva localidad, calculamos la diferencia horaria entre los dos relojes, y establecemeos una sencilla regla de tres que asigna el valor de 360º de diferencia de longitud a una diferencia horaria de 24 horas, 180º a una diferencia horaria de 12 horas, y así sucesivamente, habremos obtenido la diferencia de longitudes entre el meridiano de partida y el meridiano en el que nos hallamos. 

Pero como los cronómetros no eran precisos, no había medidas precisas, y no había cartas fidedignas. Entonces entró en acción Christian Huygens. Inventó el reloj de péndulo isócrono, y lo hizo  así insensible a las posibles oscilaciones de un hipotético barco. Para el diseño del péndulo utilizó un análisis geométrico, obteniendo la misma solución que se obtendría después mediante el cálculo de variaciones -disciplina cosechada por los Bernouilli y por Euler más tarde, ya bajo la influencia del cálculo infinitesimal de Leibniz-. En el cálculo de variaciones se tratan de obtener los parámetros que describen la curva que minimiza o maximiza cierta magnitud hallada por integración en un intervalo espacial o temporal de una función en la que interviene la curva en cuestión. Es un problema normalmente de minimización. Lo que hizo Huygens fue aplicar el resultado de la existencia de aquella curva tal que si es descrita por la lenteja del péndulo el período de la oscilación es independiente de la posición más alta de la lenteja (es decir, independiente de los bamboleos), y además mínimo. La curva que se obtiene con tal cálculo es la cicloide, que tiene tales dos propiedades, por lo que se puede decir que es una curva tautócrona y braquistócrona respectivamente. La cicloide es la curva que describe un punto fijo de una circunferencia al rodar ésta. En otras palabras, si la lenteja comienza desde una posición más alta de lo normal y describe una cicloide, el tiempo de descenso será el mismo, pues al partir desde más arriba se acelera más y compensa así el mayor espacio que debe recorrer. Por otra parte ese tiempo es el mínimo posible dentro de los posibles para diferentes curvas descritas por la lenteja. 

Así, al construir péndulos cuya lenteja describiera una cicloide, se conseguía resolver el problema de la longitud, al hacer su medida independiente de los bamboleos del barco. Para mayor seguridad se montaba el cronómetro sobre una  montura Cardan que amortiguaba en la medida de lo posible las oscilaciones. 

Este es un ejemplo más de la importancia de las matemáticas para el progreso de la técnica, que repercute directamente en el beneficio de la humanidad.

 

La conjetura de Poincaré, la forma del universo, y Grigori Perelman

 

perelman

 

El que fue mejor matemático de principios del siglo XX, según el criterio de muchos profesionales acreditados en este campo, el francés Henri Poincaré, tuvo una intuición con grandes implicaciones para el estudio de la forma del universo. Cuando se descubre algo en matemáticas, suele haber consecuencias a medio y largo plazo, y ésta no fue una excepción. Una conjetura es una intuición que se cree cierta, aunque en el momento de ser establecida no se de una demostración de la misma, y que se postula como supuestamente verídica en base a los resultados propios del grado de avance de la disciplina matemática involucrada en el instante de ser enunciada. La conjetura de Poincaré establece, hablando de un modo técnico, que toda variedad tridimensional simplemente conexa es homeomórfica a una esfera tridimensional.

Una variedad tridimensional es un conjunto de puntos descritos mediante ternas de números. Un ejemplo de variedad tridimensional es un espacio vectorial, que en realidad es la variedad de tres dimensiones tangente a una variedad tridimensional genérica. Otro ejemplo de variedad, en este caso bidimensional es el de una esfera (la corteza de una bola maciza). Como dado un punto de la superficie esférica cualquier punto de su vecindad puede considerarse como incluido en un plano y éste es engendrado mediante combinaciones lineales de dos vectores independientes se dice que es una variedad de dos dimensiones.

Por otro lado un homeomorfismo es una aplicación o función continua entre dos conjuntos tal que es uno a uno (biyectiva) y la inversa es además continua. En otras palabras, un homeomorfismo es una deformación continua entre puntos vecinos que le podemos aplicar a un objeto para conseguir otro diferente geométricamente, pero topológicamente equivalente.

Además, para ya concluir con los conceptos previos, una variedad simplemente conexa es una variedad conectada y sin agujeros, en otras palabras, una variedad o conjunto de puntos de una única pieza y sin huecos internos. Equivalentemente, una variedad es simplemente conexa cuando podemos deformar un lazo cerrado que pase por puntos de la variedad de forma continua pasando en los estados intermedios por puntos de la variedad hasta reducirlo a un punto. Un ejemplo de variedad que no es simplemente conexa es un toro (donuts), pues existen lazos cerrados en la superficie tórica que no se pueden reducir a un punto.

Pues bien, ya están explicados los conceptos básicos. ¿Qué tiene que ver todo esto con el universo?. Pues tiene que ver con el hecho de que el universo es una variedad tridimensional, no sabemos si compacta (finita), si simplemente conexa, o si plana e infinita. ¿Por qué es una variedad tridimensional y no simplemente un espacio vectorial sin curvaturas?. Pues ésto es así porque el espacio es curvo, como se desprende de la teoría general de la relatividad, se curva más localmente en torno a un punto cuanta más masa hay acumuluda en ese punto. Ésta es precisamente la causa de la gravedad, que Newton no supo explicar con su teoría de la gravitación. La gravedad es consecuencia de la curvatura del espacio-tiempo. El hecho de la curvatura del universo es un hecho contrastado experimentalmente. La primera prueba científica de tal cosa la obtuvo el especialista en relatividad Sir Arthur Edington, que además era físico experimental, y que en un eclipse total de sol en Australia tomó imágenes telescópicas del evento usando placas fotográficas, con lo que pudo comprobar que cuando la luna se intercalaba de manera perfecta entre el sol y la Tierra, la luz procedente de las estrellas que bordeaban el sol se curvaba y aparecían desplazadas en relación a su verdadera posición, concordando el desplazamiento con lo previsto por la teoría general de la relatividad. Ésta fue en realidad la primera prueba experimental que confirmaba la teoría de Einstein, si bien de manera posterior se han realizado muchos otros experimentos que no han hecho sino corroborar lo predicho teóricamente por el físico germano-suizo. Ni siquiera la luz pasa sin modificación en la cercanía de los astros masivos (de los cuales el paradigma podría ser un agujero negro, que no la deja escapar de su atracción, de ahí el calificativo de “negro”). Y la luz alcanza la máxima velocidad posible en el universo. Ésto es así porque si un objeto fuese capaz de escapar a la propia luz que o bien genera o que refleja, entonces se violaría el principio de causalidad, que establece que las causas preceden a los efectos, pues veríamos antes el futuro del objeto que su pasado, suponiendo un sistema de referencia inercial durante todas las medidas, en el que no existiesen variaciones parejas al principio de relatividad de la simultaneidad. Equivalentemente, obtendríamos antes información de su futuro que de su pasado si éste radiase o reflejase ondas electromagnéticas, que viajan también a la velocidad de la luz en el vacío. (La luz es un caso particular de ondas electromagnéticas de altísima frecuencia). La violación del principio de causalidad contradeciría por lo tanto la experiencia. Se concluye entonces que es la velocidad de la luz la que fija las geodésicas o líneas de mínima longitud entre dos puntos del espacio en la variedad tridimensional que lo define.

De todo lo anterior se deduce que si fuésemos capaces de cartografiar el universo según un conjunto de paralelepípedos (que se curvan en una cuarta dimensión que no percibimos) y si verificamos que cualquier lazo cerrado es compresible hasta un punto según una transformación continua, estaríamos en realidad probando que el universo será equivalente topológicamente a una tri-esfera, por ser ésta la única variedad tridimensional simplemente conexa y compacta, cosa que se ha demostrado con el trabajo de Grigori Perelman, si bien su demostración matemática se ha centrado en algo más general que la conjetura de Poincaré, como es la conjetura de geometrización de Thurston. Cuando se cartografía una superficie, por ejemplo, se tiene una región del plano, al igual que sucede cuando cartografiamos la superficie terrestre en los planisferios. Cuando se cartografía una variedad tridimensional se tiene una región de tres dimensiones que se corresponde uno a uno con la variedad mediante una aplicación biyectiva llamada inmersión.

Por desgracia, no tenemos el poder actualmente para cartografiar según paralelepípedos el universo, pero sí sabemos que probablemente la forma de nuestro universo no sea la de una tri-esfera, pues el grado de curvatura en el espacio-tiempo, que viene dado por el tensor de Ricci, es ínfimo. Esto es, el espacio-tiempo es prácticamente plano.

La demostración de la conjetura de Poincaré ha sido, por su trascendencia, todo un reto para los matemáticos del siglo XX, y una continua fuente de frustraciones. Pero en el mundo existen personas de talento casi sobrenatural, los que comúnmente se denominan genios, en realidad tan pocos que se cuentan con los dedos de las manos. Uno de los genios actuales de las matemáticas es sin duda Grigori Perelman, que con una sorprendente e innovadora argumentación, ha vencido el problema propuesto hace cien años por Poincaré y que se había resistido a generaciones de matemáticos. Desde la intervención de Perelman, la conjetura ha pasado a ser un teorema, al haber demostrado un caso incluso más genérico que el que aquél intuyó.

Por esta demostración, Grigori Perelman fue premiado con la medalla Fields (que junto con la medalla Abel y la medalla Copley son los máximos honores en forma de galardón a los que puede aspirar un matemático) en la convocatoria organizada en el ICM (Congreso Internacional de Matemáticas celebrado en Madrid en el año 2006). Sorprendiendo a propios y extraños, Perelman no acudió a recoger el galardón, aunque el reconocimiento a escala planetaria ya no hay ser viviente que se lo quite. Además se desconoce, en el momento actual, si Perelman aceptará el premio monetario propuesto por el Instituto Clays para quien demostrase la conjetura de Poincaré, entidad que otorga un millón de dólares a las personas que resuelvan los denominados “problemas del milenio”, entre los que aquélla se encontraba. Ni que decir tiene que no son problemas precisamente sencillos. Probablemente lo que le sucede a Grigori Perelman, que vive una vida casi de ermitaño desde las conferencias que pronunció sobre su trabajo, es que le molesta estar en el punto de mira de la prensa y los medios de comunicación, aunque la verdadera respuesta sobre la causa de este comportamiento paradójico sólo la conoce él.

 

Los radiofaros Consol (Elektra-Sonne) – (1) Introducción –

 

 

Comienzo en esta entrada mi iniciativa particular para que no se pierda en el olvido la trascendencia que han tenido las antenas alemanas construidas bajo el mandato de Hitler -con permiso de Franco- allá por el año 1942, en la localidad de Arneiro (municipio de Cospeito). Recientemente han caido al suelo debido a un temporal de viento las dos torres que quedaban en pie (eran inicialmente tres torres). En particular, mi interés tiene que ver más bien con el aspecto técnico, y en consecuencia a partir de este momento publicaré en esta web una serie de mini-artículos dedicados fundamentalmente a la historia y funcionamiento de la estación radioeléctrica Elektra-Sonne (llamada también Consol) que operaba desde Arneiro con una frecuencia de portadora de 285 KHz., como recuerdo de una tecnología pasada que en parte, al menos desde el punto de vista conceptual, supuso la constitución de uno de los ancestros del Sistema GPS de Posicionamiento actual. Para acometer esta tarea repartiré el gran conjunto de conceptos que es preciso manejar en pequeñas entradas independientes, de tal forma que de forma global se puedan entender con el grado de profundidad que se quiera los entresijos de este sistema radiante.