Condición necesaria y suficiente para la convergencia del método de vasos comunicantes en el espacio de Hilbert L2.

 

 

En mi anterior artículo matemático había obtenido una condición que de modo suficiente garantizaba la convergencia al valor medio del cálculo integral para la sucesión de funciones de cambio variable. En el paper que ahora presento doy un paso más, hallando la condición necesaria y suficiente, esto es, equivalente, a dicha convergencia, si elegimos el valor de Xo de cierta manera, que es el punto donde vamos “midiendo las oscilaciones de la onda igualadora” que termina por igualar la altura del nivel en todo el intervalo de la función si se da la convergencia.

 


 

La demostración del teorema parejo contiene la prueba de los enunciados en ambos sentidos, tal y como se debe esperar de un teorema de equivalencia entre dos asertos.

Por una parte, se prueba que en caso de que una función cuya integral definida en un intervalo queramos obtener pertenece al espacio de Hilbert de las funciones cuadrado-integrables y da lugar a una sucesión de cambio variable convergente, en ese caso se obtienen dos cosas de manera necesaria, que son, respectivamente, que la sucesión de derivadas de la función de partida tiene la función nula como límite; por otra parte, que se cumple la condición suficiente de convergencia hallada en los dos anteriores artículos de la serie, y que relaciona el máximo de la función en el intervalo con el recorrido máximo de la misma en el intervalo y con el intervalo.

 

 

En segundo lugar, se prueba la implicación en el otro sentido y se verifica que si se cumplen esas dos condiciones, entonces se produce la convergencia. El artículo está convenientemente registrado en el Registro de la Propiedad Intelectual.

 

PARA INICIAR LA DESCARGA CLICAR AQUI: condicion_equivalente_de_convergencia

 

  1. No trackbacks yet.

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .

A %d blogueros les gusta esto: